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Aerodynamics and Flight Mechanics

Goal: Improve the safety of aircraft in icing conditions.

Objective: 1) Develop steady state icing characterization 
methods and identify aerodynamic sensors. 

2) Develop linear and nonlinear iced aircraft 
models.

3) Identify envelope protection needs and 
methods.

Approach: First use Twin Otter and tunnel data to develop 
a linear clean and iced model.  Then develop a 
nonlinear model with tunnel and CFD data. Use 
the models to develop characterization and 
envelope protection.



Smart Icing Systems NASA Review, June 13-14, 2000

2-4

THE AERODYNAMICS AND
FLIGHT MECHANICS GROUP

Wind Tunnel
Data

Iced
Aerodynamics

Model

Computational
Fluid

Dynamics

Iced Aircraft
Model

Clean Aircraft
Model

Aircraft - Flight
Mechanics
Analysis

Steady State
Characterization

Flight Mechanics Model

Devesh Pokhariyal

Tim Hutchison

Jason Merret, Ryan Oltman

Satish Kumar, Jianping Pan

Characterization

Flight Simulation

Envelope Protection

Smart Icing System Research

Holly Gurbacki
Aerodynamic

Sensors



Smart Icing Systems NASA Review, June 13-14, 2000

2-5

Outline

• Development of the Iced Aircraft Model

• Steady State Characterization

• Hinge-Moment Aerodynamic Sensor

• CFD Analysis

• Atmospheric Disturbances

• Conclusions and Future Plans



Smart Icing Systems NASA Review, June 13-14, 2000

2-6

THE AERODYNAMICS AND
FLIGHT MECHANICS GROUP

Wind Tunnel
Data

Iced
Aerodynamics

Model

Computational
Fluid

Dynamics

Iced Aircraft
Model

Clean Aircraft
Model

Aircraft - Flight
Mechanics
Analysis

Steady State
Characterization

Flight Mechanics Model

Devesh Pokhariyal

Tim Hutchison

Jason Merret, Ryan Oltman

Satish Kumar, Jianping Pan

Characterization

Flight Simulation

Envelope Protection

Smart Icing System Research

Holly Gurbacki
Aerodynamic

Sensors



Smart Icing Systems NASA Review, June 13-14, 2000

2-7

Outline

• Icing effects model

• ηice and η formulations

• η variations with environmental variables

• Neural network approach

• Performance of neural network predictions

• Conclusions and future work
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Icing Effects Model

To devise a simple, but physically representative, model 
of the effect of ice on aircraft flight mechanics for use in 
the characterization and simulation required for the 
Smart Icing System development research.

Objective:
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Icing Effects Model

• = arbitrary stability and control derivative 

(CLα, Cmδe, etc.)

• = icing severity parameter 

• = coefficient icing factor

)A(C

iceη

ACk′

)A(Ciceiced)A( C)k1(C
A

′η+=

)conditionsicing.,configandgeometryaircraft,IPS(fk )A(CA
=′
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ηηice Formulation

• ∆Cd fit as a function of n and AcE 
− ∆Cd data obtained from NASA TMs 83556 and  105374, 

and NACA TNs 4151 and 4155

− n = freezing fraction

− Ac = accumulation parameter

− E = collection efficiency

• ∆Cdref calculated from ∆Cd equation using continuous 
maximum conditions

( )
( )min10t,conditions.max.cont,dataairfoilIRTC

dataairfoilIRTC

refd

d
ice =∆

∆
=η
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ηηice Reference Value

• To nondimensionalize the ∆Cd equation, a reference 
condition was chosen based on FAA Appendix C 
Maximum Continuous conditions.

• NACA 0012  c  = 3 ft.

MVD = 20 µm V∞ = 175 knots                       
LWC = 0.65 g/m3 t = 10 min

T0 = 25 °F

• These conditions yielded a ∆Cd = 0.0239 at ηice=1
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ηηice Equation (v3.1)

( ) )n(gEAZ c1ice ⋅⋅=ηFor t ≤600s:

For t >600s: ( ) )s600(e1Z ice
tZ

2ice
3 η+−⋅=η

g(n) is a function of n that varies between 0 and 1, 
and has its maximum at n=0.2

Z2 = f(maximum ηice, ηice at 600s)

Z3 = f(Z2, slope of ηice at 600s)

ηice(600s) = value of ηice at 600s

Z1=183.339
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ηηice Variation with AcE and n
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ηη Formulation

• To capture effects of aircraft geometry, the aircraft 
specific icing severity factor, η, was developed

• The aircraft specific icing severity factor 
incorporates the aircraft specific airfoil, chord, and 
angle of attack 

)A(Ciceiced)A( C)k1(C
A

′η+=

AA C
ice

C kk
η
η

=′
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Differences Between ηη and ηηice

ηice η
Chord 3 ft. Actual
Airfoil NACA 0012 Actual

Velocity 175 knots Actual
Angle of Attack 0° Actual

MVD Actual Actual
LWC Actual Actual

T∞ Actual Actual
Time of encounter Actual Actual
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Effect of LWC and T on ηη

Twin Otter
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Effect of T and LWC on ηη

Twin Otter
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Effect of MVD and T on ηη

Twin Otter
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kCA Definitions

• Equations:  (using performance data from Twin Otter flight tests)

)k1()C()C( iceCAA Acleanice
η+= 1

)C(

)C(
k

clean

ice
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A
iceC −=η 2

L0DD KCCC +=
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Neural Network Approach

Proposed Neural Network approach to icing characterization:

Environmental Variables: T, LWC, MVD, etc

Ice Shape Neural Net

Ice Shape: horn height, horn location, etc

2-D Aerodynamic Performance

3-D Aerodynamic Performance, Stability and Control

2-D Aerodynamic Neural Net

3-D Aerodynamic Neural Net
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Neural Networks

• Based on the structure of the human brain, with 
multiple neurons and synapses 

• Each neuron multiplies its inputs by “synaptic 
weights” to achieve an output

• Very good at handling and fitting data that have 
complex, nonlinear correlations

• Must be trained with a set of known data

• For the SIS Project, the Matlab Neural Net 
Toolbox has been used
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Neural Network Architecture

Angle of attack

Horn location

• Sample neuron: Y= f(Σ Wi xi) with xi = inputs to neuron 
• Wi are trained with known data (f refers to a sigmoidal

function)
• Y = output of a neuron

Output
Layer

Hidden
Layer 2

Hidden
Layer 1

Input
Layer

Horn height

Horn LE radius

Cl

Cd

Ch

Cm

Simple neural net example 
(actual neural net uses 5 layers of 8 nodes each)



Smart Icing Systems NASA Review, June 13-14, 2000

2-24

Training Data

• This neural net was trained using data collected 
by Kim and Bragg, which is presented in AIAA 99-
3150

• This data examines three ice horn heights and 
three leading edge radii at six different locations

• The collected data includes Cl, Cd, Cm and Ch for 
the NLF(1)-0414 airfoil
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Training Data (cont.)
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Conclusions

• Linear icing effects model, ηice, is almost 
finalized

• Initial results from neural net analysis 
for prediction of 2-D flight performance 
parameters are promising
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Future Research

• Develop neural nets for prediction of 2-D 
aerodynamic coefficients based on a larger data 
set

• Continue exploration of neural nets for prediction 
of ice shape characteristics

• Develop improved methods for converting 2-D to 
3-D aircraft derivatives
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Outline

• NSU2D predictions with upper-surface ice -
shapes (to establish the effects of location, 
size, flap deflection, Re, and airfoil shape)

• WIND predictions for leading-edge ice-
shapes (for similar goals to allow 3-D 
effects) 

• Detached Eddy Simulation development with 
WIND to increase separated flow predictive 
performance for CL,max and allow unsteady 
hinge moment prediction
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NSU2D

• Mavriplis D. (ICASE Jan ’91)
• Spalart-Allmaras 1-Eq. 

Turbulence Model with 
transition specification

• Unstructured Solution-
Adaptive Triangular Element 
Grid

• Steady state convergence 
accelerated by employing 
local-time stepping, residual 
smoothing, and algebraic 
multigrid algorithm (AMG)

Original mesh

Adapted mesh
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Velocity Contours

• NACA 
23012m

• 0.15” Quarter 
Round at 
x/c=0.10

• B.L. tripped

• Re=1.8x106
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Effect of SLD Ice-Shape Location

NACA 23012m, Ice-shape size of k/c=0.0083,
B.L. Tripped, Re=1.8x106

HINGE MOMENTLIFT
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Cp

• NSU2D 
• NACA 

23012m
• Ice-shape 

size of 
k/c=0.0083

• α=3°
• B.L. Tripped
• Re=1.8x106



Smart Icing Systems NASA Review, June 13-14, 2000

2-38

Cl for Fully Separated Flow 

Ice-shape size of k/c=0.0083,B.L. Tripped; Re=1.8x106

Expt. Clean C l,max

NSU2D Clean Fully separated 
Cl

Expt. Ice-Shape C l,max

NSU2D Ice-Shape Fully separated 
Cl

NACA 23012m NLF 0414
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Leading Edge Ice Shapes

• WIND – RANS (Ver. 3.0) 
– NPARC Alliance (AIAA paper 98-0935)

– Same turbulence model used as NSU2D

– To be compatible with NASA GLENN

– To Allow Efficient 3-D Simulations

– To Allow DES 

• GRIDGEN (Ver. 13.4)
– Pointwise Inc.
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Iced NLF-0414 Airfoil
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Iced NLF-0414 Airfoil : Cl, Cd

s/c=0%, k/c=6.67%
Re=1.8 X 106, Ma=0.185
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Iced NLF-0414 Airfoil : Cl, Cd

s/c=0%, k/c=4.44%
Re=1.8 X 106, Ma=0.185
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Iced NLF-0414 Airfoil : Cl, Cd

s/c=3.4%, k/c=6.67%
Re=1.8 X 106, Ma=0.185
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Iced NLF-0414 airfoil : Cl,max

Re=1.8 X 106, Ma=0.185
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Need for DES

• RANS does not give robust solution to massively 
separated flow and this may prevent accurate 
prediction of Cl,max (especially for iced airfoils)

• Solution: Employ eddy-capturing scheme to 
handle large-separation regions

• Possible Choices:
– LES (Large Eddy Simulation) uses subgrid filter to 

capture large scales
– DNS (Direct Numerical Simulation) resolves all scales
– DES (Detached Eddy Simulation) allows LES in free 

shear regions and RANS in attached flow
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Detached Eddy Simulation

• Allows RANS description in the 
boundary layers and LES description for 
massively separated regions

• Can be formulated on S-A model with d
(distance from the wall) replaced by 

• Has only one adjustable constant CDES

˜ d 

˜ d ≡ min( d,CDES∆)
∆ ≡ max(∆x, ∆y,∆z)

(Spalart et. al. 1999)
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Geometry of the Grid for the Backstep

Viscous Wall B.C.

Inviscid wall

Outflow
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Backstep – Instantaneous Vorticity

RANS LES

CDES=1.0, ∆t=0.00125 H/Uinf, After 8000 cycles

WIND-DES
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Grid Resolution Study: Sample plot

∆XR/XR=0.07, ∆Xo/δ = 0.05

WIND-DES
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Conclusions

• NSU2D reasonably predicts the trends of all the 
aerodynamic forces and moments for upper 
surface icing on NACA 23012m and NLF 0414 
(but C l,max not robust)

• WIND-RANS predictions agree reasonably well 
with experimental results for leading-edge icing 
for NLF 0414

• WIND-DES has been developed and captures 
the coherent structures in the free shear layer 
for backstep flow
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Future Work

• Apply WIND-RANS to 2D ice-shapes on other 
airfoils (in particular the Twin Otter wing and 
tailplane) for the 2D aerodynamic net database

• Extend WIND-RANS to 3D iced wings for the 
3D aerodynamic net database

• Apply WIND-DES to iced airfoils and wings to 
allow improved C l,max and predict unsteady 
hinge moments

• (Far term) Apply WIND-DES to simultaneously 
model wing and tail with unsteady ice accretion
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Outline

• Introduction
• Flight Mechanics Models and Icing Effects
• FDC code and modifications to the code
• Effect of Ice on Aircraft Flight Mechanics

– Cruise and hold in constant power flight
– Turbulence, sensor noise and filters
– Icing on selected aircraft components

• Neural Network training data
• Conclusions
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Twin Otter Model

• Twin Otter Aircraft Characteristics

Parameter Value Units
Wing Area 39.02 m2
Wing Span 19.81 m
Aspect Ratio 10
Mean Aerodynamic Chord 1.981 m
Mass 4150 kg
Moments of Inertia: Ixx, Iyy, Izz, Ixz 21279, 30000,44986, 1432 kg.m2
Flap Deflection 0 deg
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Stability and Control Model

• Model is derived primarily from flight dynamics data 
in AIAA report 86-9758, AIAA report 89-0754 and 
AIAA 93-0754

• Icing scaled using η parameter (η = 0.0675, η/ηice
= 0.79)

• Non-dimensional derivatives:

CYββ CYp CYr CYδδr Clββ Clp Clr Clδδa Clδδr Cn ββ Cnp Cnr Cnδδr Cnδδa

clean -0.6 -0.2 0.4 0.15 -0.08 -0.5 0.06 -0.15 0.015 0.1 -0.06 -0.18 -0.12 -0.001
iced -0.48 -0.2 0.4 0.138 -0.072 -0.45 0.06 -0.135 0.0138 0.08 -0.06 -0.169 -0.11 -0.001

CZ0 CZα CZq CZδe CX0 K Cm0 Cmα Cmq Cmδe

clean 0.360 -5.660 -19.970 -0.608 0.041 0.052 0.400 -1.310 -34.200 -1.740
wing_ice 0.360 -5.342 -19.700 -0.594 0.050 0.053 0.400 -1.285 -33.000 -1.709
tail_ice 0.360 -5.520 -19.700 -0.565 0.046 0.053 0.400 -1.263 -33.000 -1.593
all iced 0.360 -5.094 -19.700 -0.550 0.062 0.057 0.400 -1.180 -33.000 -1.566
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• Flight Dynamics Code 1.3
– FDC 1.3 is a free source code by Marc Rauw (based in the 

Netherlands: http://home-2.worldonline.nl/~rauw/)

– Code developed using MATLAB and SIMULINK

– 6 DoF equations, 12 nonlinear ODEs

– Autopilot/open loop simulations

– Atmospheric turbulence model

– Code modifications:
• Nonlinear derivatives represented using AOA “look-up tables”
• Changes in derivatives due to ice accretion simulated as a 

function of time

• Incorporated sensor noise 
• Included hinge moment models

Flight Dynamics and Control Toolbox
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Open Loop Analysis Tool for Nonlinear Twin Otter Model
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Closed Loop Analysis Tool for Nonlinear Twin Otter Model

outputs
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FDC Validation

• The FDC Code is validated by comparing the 
response of a doublet to published NASA 
data (AIAA 99-0636) for the Twin Otter 
aircraft

• The validation results are published in AIAA 
2000-0360

• The response of other Twin Otter models to 
the elevator doublet are also observed
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Elevator Doublet Input
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Twin Otter Response to Elevator Doublet

5610

5620

5630

5640

5650

5660

0 2 4 6 8 10 12 14

TIP  F l igh t  p5220

Current  Steady-State

Mi l le r  and Ribbens
1 8

D A T C O M

A
lt

it
u

d
e

 (
ft

)

T ime  ( s )

Twin Otter

V0=111 kts

h=5620 ft



Smart Icing Systems NASA Review, June 13-14, 2000

2-64

Atmospheric Turbulence and Noise

• The turbulence model used in the FDC 1.3 steady state 
analysis is based on the Dryden spectral density 
distribution

• Turbulence intensity can be varied and are 
characterized by the effect on the aircraft z-acceleration

• Sensor noise magnitudes are twice the uncertainty 
values given in AIAA 93-0398 and are modeled as 
band limited white Gaussian distributions

• The effects of turbulence provide an overlap between 
the quasi-steady characterization and the dynamic 
characterization
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Effects of Filtering

• Filters are applied to data obtained from the constant 
power cruise flight conditions, in the clean and iced 
configurations.  The initial trim values for the Twin 
Otter are:

• V = 160 kts

• h = 9000 ft

• A/C RMS z-acceleration = 0.15g

• The data, sampled at variable time steps, is post-
filtered using low-pass Butterworth filters
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Performance in Holding Turn and Cruise

• A holding pattern is represented by a standard-rate 
turn and cruise flight at constant power. 

• Initial trim conditions for the standard-rate turn and 
cruise case in clean and iced configuration: 

• V = 136 kts

• h = 6560 ft

• A/C RMS z-acceleration = 0.15g

Standard 2 minute turn rate.



Smart Icing Systems NASA Review, June 13-14, 2000

2-68

Performance in Holding Turn and Cruise, V

Twin Otter

Const. 
Power

Const. Alt.

V0=136 kts

h=6560 ft

η = 0 to 0.5

Holding turn:

3°/s turn

120

125

130

135

140

0 50 100 150 200 250 300 350

Cruise, No Ice

Cruise, Ice

Turn, No Ice

Turn, Ice

V
 (

kt
s)

Time (s)



Smart Icing Systems NASA Review, June 13-14, 2000

2-69

Holding Turn and Cruise, αα
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Holding Turn and Cruise, δδe

Twin Otter

Const. 
Power

Const. Alt.

V0=136 kts

h=6560 ft

η = 0 to 0.5

Holding turn:

3°/s turn
-3

-2.5

-2

-1.5

-1

-0.5

0 50 100 150 200 250 300 350

Cruise, No Ice

Cruise, Ice

Turn, No Ice

Turn, Ice

δ e 
(d

eg
)

Time (s)



Smart Icing Systems NASA Review, June 13-14, 2000

2-71

Holding Turn and Cruise, δδa
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Holding Turn and Cruise, δδr
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Hinge Moment Models

• Models are used in simulations to study the 
potential use of hinge moment sensors as 
aerodynamic performance monitors

• Ch and Ch_rms capture the effects of icing on the 
flow field over the airfoil surface.

• Ch_rms is the RMS of the unsteady hinge moment, 
which is a measure of flow field separation due to 
ice accretion

• Models based on hinge moment measurements 
taken at UIUC on a NACA 23012 airfoil with 
quarter round ice-shapes (AIAA 99-3149)
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Hinge Moment Models

• Models are based on limited experimental 
hinge moment data.

• Ch and Ch_rms models are a functions of angle 
of attack, elevator deflection and icing 
parameter, η

• Hinge moment models do not include the 
effect of control surface mass.
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Ch model
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Ch_rms model
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Ice Location Effects

• Ice accretion on different aircraft locations was 
considered:

• Tail ice

• Wing ice

• A constant power, constant altitude scenario, 
maintained by the autopilot, was considered

• V = 155 kts

• h = 7550 ft

• A/C RMS z-acceleration = 0.15g
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Effect of Ice Location on αα
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Effect of Ice Location on V
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Effect of Ice Location on δδE
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Effect of Ice Location on Thrust
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Determining Ice Location

• An analysis of the aerodynamic outputs 
shows the difficulty in determining the 
location of ice – the tail ice encounter 
resembles a less severe all aircraft icing 
encounter 

• The increase in drag due to ice accretion 
dominate the aerodynamic outputs in both tail 
and all aircraft iced cases
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Hinge Moment Sensors

• The wing and tail hinge moments are calculated 
for the aileron and elevator deflections 
respectively

• The η values used for the tail is based on the 
Twin Otter horizontal tail chord length of 4.75 ft.  
A linearized relationship between the wing and 
tail icing severity parameter is used

• A constant power, constant altitude scenario, 
maintained by the autopilot, was considered

• V = 155 kts
• h = 7550 ft
• A/C RMS z-acceleration = 0.15g
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Effect of Ice Location on Wing Ch
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Effect of Ice Location on Tail Ch
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Effect of Ice Location on Wing Ch_rms
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Effect of Ice Location on Tail Ch_rms
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Hinge Moment for Varying Trimmed V

• Ch and Ch_rms are calculated for the following 
trim velocities:

• V = 78 kts
• V = 97 kts

• V = 117 kts
• V = 136 kts
• V = 155 kts

• All other conditions are held constant:
• H = 6560 ft

• ηice= 0.7112
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Wing Ice Cases
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Tail Ice Cases
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Icing Characteristic N-Net Input Data

FDC
Lat/Long.

Trim 
Characterization

Dynamic 
Parameter ID

Clean Trim
Characterization

Hinge 
Moment

Measurements

ηη

Turbulence

Measurement 
Noise

Ch
w , Ch

t

Red – Random Signals
Blue – Neural Net Data

Cmδδe, Cmq, 
Cn*, …

∆α∆α, ∆δ∆δe, ∆∆Cd,
∆∆Cd_dot, …

αα, δδe, Cd, …

α, δα, δE

Ch
w

_RMS , Ch
t
_RMS

Expected Clean
Derivatives

Icing
Characterization

Neural 
Network



Smart Icing Systems NASA Review, June 13-14, 2000

2-92

Conclusion

• Use of ηice parameter provides a simple model to 
determine iced aircraft data

• Effect of ice on V, α, and δe for the constant power case 
are significant, and could be used to characterize the 
accretion

• Effects of turbulence and sensor noise can be filtered.

• Flight maneuvers increase the apparent effects of ice 
and improve the potential for ice detection

• The use of hinge-moment data to distinguish tail from 
wing ice is encouraging
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Future Research

• Validate a fully nonlinear force and moment 
model

• Explore constant velocity and other scenarios 
using FDC

• Obtain hinge moment data for more airfoils and 
ice-shapes including the Twin Otter airfoil

• Examine envelope protection strategies
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Introduction

• Concerns about false alarms in the Smart Icing 
System were raised at Reno 2000

• Since the effects of windshear and other atmospheric 
disturbances may be similar to icing, false alarms in 
the Smart Icing System could possibly occur

• The SIS should be able to distinguish quickly 
between the icing and atmospheric disturbances so 
appropriate recovery maneuvers can be executed

• Preliminary analysis of the effects of microbursts will 
determine if further research is required
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Objectives

To devise a simple, but physically representative, model 
of the effect of microbursts, gravity waves, and other 
atmospheric disturbances on aircraft flight mechanics.  
Then use this model to evaluate the effects on the SIS 
system.

To evaluate concerns of possible false alarms of the 
SIS due to atmospheric disturbances

Objective:

Motivation:
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Microburst

• Taken From Mulgund and Stengel, Journal of Aircraft, 1993
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Microburst Model

• Microburst model is from Oseguera and 
Bowles, NASA TM 100632

• Microbust Parameters are 
– Umax : Maximum outflow (ft/s)

– Zmax : Height of maximum outflow (ft)

– R : Radius of the microburst (ft)
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Microburst Model

• NASA TM 
100632

• R = 2500 ft

• Umax = 63 ft/s

• Zmax = 119 ft
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Implementation in FDC

• Wind force components
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Comparision

• A FDC trajectory was compared to results 
from, Target Pitch Angle for the Microburst 
Escape Maneuver by S. Mulgund and R. 
Stengel, JoA, 1993

• Due to current limitations in the FDC the 
exact aircraft maneuver could not be 
simulated

• Both aircraft were light twin-turboprops
• Instead of a Target Pitch Angle (TPA) escape 

maneuver a maximum power maneuver was 
used
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Comparison

• Simulated microburst parameters
– R = 3000 ft

– Umax = 80 ft/s ~ 47.4 kts

– Zmax = 150 ft

• Initial conditions
– Altitude = 1400 ft

– Trim condition
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Comparison
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Microburst Analysis

• 11 different microbursts were simulated 
in FDC varying Radius, and Umax

• Simulation conditions
– V = 136 kts

– Initial altitude varied from 1312 ft to 2625 ft

– Altitude hold autopilot setting

– No recovery maneuver
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Microburst Analysis

Microburst Number Microburst Paramaters Severity
R (ft) Umax (ft/s) Zmax (ft) Umax/R (1/s)

1 1000 5 150 0.0050
2 1000 10 150 0.0100
3 1000 20 150 0.0200
4 3000 5 150 0.0017
5 3000 10 150 0.0033
6 3000 20 150 0.0067
7 3000 60 150 0.0200
8 3000 120 150 0.0400
9 5000 10 150 0.0020
10 5000 20 150 0.0040
11 5000 40 150 0.0080
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Wind Velocities for Microburst #5
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Results for Microbursts and Icing
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Results for Microbursts and Icing
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Results for Microbursts and Icing
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Results for Microbursts and Icing
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Comparison to an Icing Case

• Compared the rates of change of alpha, 
velocity, and altitude

Case dα/dt (deg/s) dV/dt (kts/s) dh/dt  (ft/min) dδe/dt (deg/s)

Microburst 1 0.1718 -0.4505 -466.6 -0.0343
Microburst 2 0.3830 -1.1468 -990.3 -0.0805
Microburst 4 0.0269 -0.2000 -150.0 -0.0143
Microburst 5 0.0472 -0.6000 -150.0 -0.0427
Microburst 6 0.1345 -1.5000 -266.7 -0.0851
Microburst 9 0.0229 -0.2917 -55.5 -0.0203

0.04 0.0040 -0.0323 0.0 0.0039
0.08 0.0204 -0.7951 0.0 -0.0196
0.1 0.1030 -0.2537 -5.0 -0.0943
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Comparison to an Icing Case

• Microburst rates of change were larger than 
the worst icing case initially, but after a long 
icing encounter the rates were comparable

• These large differences sould make it 
straightforward to distinguish between icing 
and wind shear encounters 

• Altitude is maintained for the icing case, but 
not in the microburst case

• In addition dynamic identification data would 
be available to help identify windshear as well
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Conclusions

• Initial analysis of the microbursts 
demonstrated that the encounters would be 
distinguishable

• Effects are similar but of different magnitude 
or occur at different times (late in the 
encounter)

• Different strategies for recovery needed
– Very important not to misinterpret the encounter

• Still need to address the gravity waves and 
other atmospheric disturbances
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Future Work

• Validate the FDC windshear model 
• Add icing to the windshear encounters

• Possibly develop a windshear neural 
network to detect windshear 

• Analyze the effect other atmospheric 
encounters, gravity waves, etc
– Need a simple model for gravity waves
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Conclusions

• Linear icing effects model, ηice, is almost finalized
• Initial results from neural net analysis for prediction of 

2-D flight performance parameters are promising
• Effect of ice on V, α, and δe for the constant power case 

are significant, and could be used to characterize the 
accretion.

• The use of hinge-moment data to distinguish tail from 
wing ice is encouraging.

• CFD reasonably predicts important trends.  Moving to 
WIND-DES for better max lift prediction.

• Initial analysis of the microbursts demonstrated that the 
encounters would be distinguishable.
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Future Research

• Continue exploration of neural nets for prediction of iced 
aircraft characteristics.

• Validate a fully nonlinear force and moment model.

• Improve the hinge moment models.

• Develop envelope protection strategies.

• Apply WINDS-DES to iced airfoils to improve maximum 
lift prediction. 

• Analyze the effect other atmospheric encounters, gravity 
waves, etc.


