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Tamer Ba§arf William R. Perkinsf Michael B. Braggf
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Urbana, IL

This work advances a neural network that characterizes aircraft ice accretion in
order to improve flight performance and safety. Neural networks have been developed
previously for use within an ice management system that monitors inflight aircraft icing
and its effects upon performance, stability, and control. The previous work has applied
these networks to stability and control derivative estimates provided by an H°° parameter
identification algorithm during a longitudinal maneuver. This paper extends those results
by addressing ice characterization in the absence of pilot input when poor excitation of
the flight dynamics limits the accuracy of parameter estimates. To compensate for this
shortcoming inherent to steady-level flight scenarios, the neural network presented in this
paper integrates steady-state characterization and hinge moment sensing with parameter
estimates. The neural network provides icing characterization in terms of an estimate
of the previously developed icing severity factor, rj. Extensive simulation results are
presented that indicate the accuracy of neural network characterization during steady-
level flight in the presence of sensor noise and turbulence over a broad range of flight trim
conditions and turbulence levels. Furthermore, the relative utility of each information
source is investigated via consideration of network accuracy of networks trained only on
that information source.

INTRODUCTION
Current aviation research and development has be-

gun to focus more upon creating aircraft that are safe
and reliable during severe weather conditions. Aircraft
icing is a large area of concern due to the detrimental
effects of accumulated ice upon aerodynamic perfor-
mance. Small amounts of ice can have an extreme
impact upon aircraft dynamics and consequently, ic-
ing has been one of the most visible causes of severe
accidents. Icing was determined to be a factor in
803 aircraft accidents that occurred between 1975 and
1988.l Nearly half of these accidents resulted in fa-
talities. Commercial accidents such as the American
Eagle ATR-72 crash near Roselawn, Indiana, which
killed 68 people in October 1994, have also led to na-
tional recognition of icing problems.2 In response to
the abundance of aircraft icing accidents, NASA and
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the President's Commission on Aviation Safety and Se-
curity have developed an aviation safety research plan
that places a high national priority upon icing protec-
tion and prevention.3

Most icing-related accidents occur because ice ac-
cretion affects the performance and stability of an
aircraft by altering the shape of its aerodynamic sur-
faces. Other icing incidents include engine failure and
propeller ice, but this work will focus only on the ef-
fects of airframe icing. Currently, there are two main
approaches that deal with the dangers of ice accretion.
First, pilots are given complete weather information
before and during flights in order to avoid potential
icing conditions. Second, aircraft are thoroughly de-
iced before take-off and then operate an ice protection
system (IPS) to accomplish in-flight ice removal.

An IPS functions in either an advisory or primary
capacity. Advisory systems rely upon the flight crew
to activate ice protection devices based upon data re-
ceived from icing and environmental sensors. On most
commuter aircraft, icing sensors are not available and
pilots determine the level of ice accretion by visual
inspection of the wings and control surfaces. This
type of visual ice detection is inadequate because pi-
lots usually cannot see all of the wing or any of the tail.
Systems that function in a primary capacity utilize in-
formation from icing sensors to automatically activate
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Fig. 1 Aircraft icing encounter model.

anti-ice and de-icing devices. The flight crew is given
updates concerning IPS status and may manually over-
ride the system. Current ice protection equipment
consists mainly of devices that bleed hot engine ex-
haust onto the wings to prevent icing or inflatable
boots that break off accumulated ice.

Recent icing accidents have shown that the IPS ap-
proach does not always adequately provide safe and
reliable flight during icing conditions. In fact, the
ATR-72 accident resulted from ice that accreted aft
of the wing de-icing system.4 In response to the defi-
ciencies of the current IPS, a new approach has been
introduced.2 This approach adds a new Ice Manage-
ment System (IMS) that works in cooperation with
the existing IPS. The purpose of the IMS is to continu-
ally monitor ice accretion and its effects, automatically
operate the existing IPS and provide the flight crew
with an assessment of the aerodynamic performance.
It may also adapt flight controls to allow safe and re-
liable flight through icing conditions.

Ice Management System

The IMS approach is being developed by the Uni-
versity of Illinois Icing Center and is a cooperative
effort among researchers from several disciplines in-
cluding control systems, aerodynamics, flight dynam-
ics, and human factors.2 The objective of the IMS is
to provide an additional layer of defense that guards
against aircraft icing accidents. This objective is ac-
complished by monitoring ice accretion and its effects
upon aircraft flight dynamics. The IMS works in co-
operation with existing ice protection systems and the
flight crew in order to effectively use all available data.
A block diagram depicting the operation of the IMS
during an icing encounter is shown in Figure 1. The

solid lines portray the current state of the art and the
dashed lines show the additional capability provided
by the IMS. The IMS adds complexity but also creates
an aircraft that is much more robust to the effects of
ice accretion.

The purpose of the IMS is to allow safe and con-
trollable flight when hazardous icing conditions can-
not be avoided. The IMS accomplishes this task by
performing three main functions. First, ice must be
detected and then classified in order to determine the
detrimental effects upon aircraft stability and control.
Second, the IPS must be automatically activated and
operated while the IMS provides the pilot with contin-
ual updates concerning aircraft performance. Third,
the flight envelope and aircraft control laws may be
adjusted when severe ice creates potentially uncontrol-
lable conditions. This allows the IMS to protect the
aircraft against traditional icing handling events such
as roll upset and tailplane stall. Following envelope
modification, the flight crew will be notified and can
then successfully navigate using limited maneuvers un-
til the icing conditions are eliminated.

Effective IMS performance depends heavily upon
accurate detection and classification of icing events.
Since icing is a concern precisely to the extent that
it affects the flight dynamics, parameter identifica-
tion of the flight dynamics is a critical element of
the IMS.5'6 Exhaustive simulation results have demon-
strated the superior robustness and convergence prop-
erties of H°° identification techniques in the presence
of disturbances and measurement noise; hence in this
work an H°° parameter identification technique has
been adopted wherein stability and control derivatives
critically related to icing are estimated. Along with
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these parameter estimates, a rich array of measure-
ments are available that contain information on the
icing degradation, including steady-state characteriza-
tion, hinge moment sensing, and environmental, aero-
dynamic, and icing sensor information. The IMS also
incorporates this information in the "sensor fusion"
function referred to in.2 Based on this information, the
IMS provides (i) an initial indication of the presence of
ice accretion that relies heavily on ice probe measure-
ments, if they are available, followed by (ii) a charac-
terization of the type and severity of the degradation
of the flight dynamics, where by "type" we mean to
discriminate between, for example, effects leading to
tailplane stall and those leading to roll upset. Based
upon this characterization, the flight envelope will be
adjusted and control laws may be reconfigured.

ICING CHARACTERIZATION
In,7 we have advocated a neural network that char-

acterizes degradation of the aircraft flight dynamics
based upon sensor data and parameter estimates. This
characterization may be accomplished through a va-
riety of other methods, but neural networks are used
because of their ability to extract information simulta-
neously from multiple data sources that depend on the
desired information in a complex manner. It is already
known8 that a feed-forward neural network with at
least one hidden layer is able to approximate any con-
tinuous function to an arbitrary level of accuracy on
any bounded set given ideal training. Neural networks
also have inherent parallel properties that provide a ro-
bust and fault-tolerant structure. Networks are prac-
tical for aircraft applications because, following initial
training, they process information very rapidly. Rapid
computation can be achieved because the majority
of mathematical operations involve addition, subtrac-
tion, or multiplication.

Previous work by the authors, reported in,7 applied
neural networks to icing detection and classification
during a normal operational maneuver modeled as an
elevator doublet. In that case, the neural networks
incorporated only longitudinal stability and control
derivative estimates, as the estimates were fairly ac-
curate even in the presence of disturbances and mea-
surement noise due to the excitation of the maneuver.
In this limited scenario, neural networks were found to
provide an accurate icing indication along with a less
accurate but still sufficient classification of the icing
severity.

In this study, we address the more common steady-
level flight conditions, where the absence of excitation
due to pilot input limits the effectiveness of parameter
identification. Even so, it has been shown that exci-
tation due to turbulence can be exploited to provide
useful parameter estimates, albeit estimates that con-
verge much more slowly.6 In general, a longer delay
in icing indication is more acceptable during steady

level flight than during a maneuver since precipita-
tion of an icing event is less likely in the absence of
pilot action. Moreover, in this paper we address the
sensor fusion function of the IMS by incorporating,
in simulation, information not taken advantage of in
the previous work.7 Whereas environmental and ice
probe measurements primarily provide information on
the rate of ice accretion, increased hinge moments and
steady-state effects provide information on icing degra-
dation.9 By steady-state effects, we mean specifically
changes in trim conditions consistent with increased
drag and decreased lift characteristic of icing events
during flight conditions with minimal aircraft accelera-
tions (e.g., steady, level flight). The unpredictability of
ice shedding and the highly complex nature of the de-
pendence of flight dynamics degradation on the shape,
roughness, and location of ice makes correlation of the
ice accretion rate and the flight dynamics degradation
due to icing difficult. While future efforts will be made
to incorporate traditional atmospheric and ice probe
measurements, we are focusing now on demonstrating
the feasibility of the more novel aspects of the IMS ap-
proach. Hence in this paper we incorporate only the
steady-state characterization and hinge moment sens-
ing along with the parameter estimates into the icing
characterization. Finally, we again restrict our atten-
tion to longitudinal dynamics.

Neural Network Approach
As with the previous neural network results, we take

the icing severity factor rj as a measure of the degra-
dation of the flight dynamics due to ice accretion.
However, for the sake of clarity, we normalize rj by the
nominal icing condition that corresponds to the NASA
Tailplane Icing Program simulated icing condition.10*
Since rj is actually a measure of the cumulative poten-
tial atmospheric icing severity for an aircraft, the use
of 77 as a measure of the flight dynamics degradation
is consistent with the assumption that no ice shedding
(due to activation of the ice protection system, for ex-
ample) occurs. Furthermore, we are largely ignoring
the complex relationship between atmospheric condi-
tions on the one hand and flight dynamics degradation
on the other. At present, the icing severity factor is
the best measure of icing degradation available, and
hence we adopt it despite its limitations in this ca-
pacity. As in,9 we address icing encounters during
periods of steady, level flight wherein the icing sever-
ity increases linearly over ten minutes from an initial
clean condition.

A block diagram of the IMS is depicted in Figure 2.
In the upper left corner of the figure, the flight dy-
namics are subject to the unknown turbulence and
measurement noise input. As discussed in5'6 these
unknown exogenous signals fundamentally limit the

*In9 this nominal icing condition corresponds to a value of
77 = 0.0675.
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Fig. 2 IMS neural network block diagram.

accuracy of the parameter estimates, and hence must
be included in any realistic simulation. From the flight
dynamics we have measurements of the wing and tail
hinge moments (7^ and C£ along with corresponding
root-mean-square hinge moment measurements C%rrn8
and Cfrrrns. The hinge moment model is described
in.11 From the flight dynamics, we also have measure-
ments of total velocity V, angle of attack a, pitch rate
g, pitch angle 0, and elevator angle SE- From these
measurements we estimate the flight dynamics trim
velocity V", trim angle of attack a, and trim elevator
angle 1̂  by lowpass filtering the corresponding mea-
sured signals at 1/30 Hz. This estimated trim is used
by the dynamic parameter identification as well as be-
ing provided to the neural network directly, since the
H°° ID algorithm is based on a dimensional deriva-
tive flight dynamics model5 and hence depends upon
the flight dynamics trim condition. The trim condi-
tions are also used to calculate the expected clean S/C
derivatives M£ and M% against which the estimated
S/C derivatives Ma and Mq must be compared in
order to ascertain icing degradation. Furthermore, ex-
pected clean-aircraft trim values Vc, ac, and 8C

E must
be calculated to provide a reference for interpreting the
estimated trim values. In the following simulations,
the initial trim values are used as expected clean trim,
consistent with steady, level flight scenarios. When
more general scenarios are considered in the future, a
more sophisticated calculation of expected clean trim
will have to be included. Since the dynamic identifi-
cation algorithm is expected to perform better under

larger excitation and the steady-state characterization
is expected to have better accuracy under smaller exci-
tation, we have also calculated measures of excitation
in order to aid the neural network in discriminat-
ing between dynamic parameter ID and steady-state
characterization. As excitation measures we use an
estimate of the dynamic portion of the power of the
measured signals, denoted as Pa,
calculated according to

Pg, and PSB and

P« = (a - a)2,

and

The excitation measures and all other input to the
neural network are lowpass filtered by batch averaging
each signal over the past 1/2 second in order to reduce
the effect of measurement noise. Finally, the neural
network provides an estimate of the icing severity r\
at any given time instant t based only on the lowpass
filtered input at that time t. In summary, the neural
network incorporates the following batch filtered input

• hinge moment measurements: wing and tail hinge
moments CJ[ and C^ and rms wing and tail hinge
moments C%rms and firms'

steady-state characterization: estimated trim val-
ues V\ a, and SE and expected clean trim values
Fc, ac, and S
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• dynamic parameter identification: estimated S/C
derivatives Ma and Mq and expected clean S/C
derivatives M£ and M*

• excitation measure: Pa, Py, Pg, and P^

In order to be useful, the neural network must
provide accurate icing characterizations over a broad
range of trim conditions and turbulence intensity. Fur-
thermore, the icing characterization network must ac-
curately identify clean aircraft in order to avoid false
alarms. The neural networks are applied in 600-s
simulations modeling a rich set of steady, level flight
scenarios that correspond to combinations of the fol-
lowing variations

• final icing severity levels of 0, 0.02, 0.04, 0.06,
0.08, or 0.1,

• initial total velocities of 60, 65, 70, or 80 m/s,

• tail-only icing or wing and tail icing,

• turbulence level standard deviations of 0, 0.15, or
0.3 </, and

• two each of turbulence and measurement noise
sample paths for all cases.

Bach simulation was run under the assumption of con-
stant engine power, with a zero flight path angle (z.e.,
level flight), and at an altitude of 2,300 m. Simula-
tions were performed with the aid of the FDC Mat-
lab/Simulink toolbox as described in.9 Furthermore,
measurement noise consistent with Twin Otter instru-
ment accuracy specifications, listed in Table 1, were
incorporated as zero-mean, bandlimited white Gaus-
sian noise. The simulations provided all measurement
information at a 30 Hz sample rate.

Table 1 Measurement noise intensities taken from
NASA Twin Otter instrument resolution specifica-
tions as reported by Ratvasky and Ranaudo.12

Oq______<70_____GO.______&u____
0.0167°/s 0.0293° 0.003° 0.076 knot

Neural Network Architectures and Analysis
As in,7 we use a sigmoidal back-propagation neu-

ral network structure. Once the structure of a neural
network is determined, the biases and weights of the
nodes and connections, respectively, are determined
via numerical optimization with respect to the least
squares error between the known output and the net-
work output from a suite of training data. Of the data
available from the simulation cases described above,
training data was obtained by sampling the measure-
ments at 41 s intervals from each of the cases. The
networks were trained using supervised learning with
a back-propagation algorithm. Back propagation con-
sists of a gradient-based approach that runs training

sets through the neural network and adjusts various
weights and biases until the most accurate output is
given for all training sets.

Several networks were trained and tested in order
to investigate the performance of the proposed IMS
as well as the utility of the various sets of measure-
ment information. The first neural network is the IMS
neural network that was trained and tested using the
hinge moment measurements, steady-state character-
ization, parameter identification, and excitation. A
second limited IMS neural network was trained and
tested on all but the hinge moment measurements in
consideration of (i) the possibility that hinge moment
measurements are not available, and (ii) the imma-
turity of the hinge moment model. Next, several of
neural networks were each trained and tested on in-
dividual sets of information. The accuracy of these
neural networks is not considered as a prediction of
the performance of the IMS, rather their performance
is used to evaluate the usefulness of each informa-
tion source. In this analytical capacity, we have used
(i) a hinge moment neural network, (ii) a steady-state
characterization neural network, and (iii) a parameter
identification neural network.

For each neural network listed above, the network
structure was determined via trial and error with at
least three attempts at training for each. In each case
the most accurate network was selected for inclusion
in this paper. The architectures of each are

• IMS network: three hidden layers of seven nodes,
twelve nodes, and five nodes, respectively,

• Limited IMS network: three hidden layers of nine
nodes, seven nodes, and seven nodes, respectively,

• Hinge moment network: three hidden layers of
five nodes each,

• Steady-state characterization network: three hid-
den layers of nine nodes, seven nodes, and seven
nodes, respectively,

• Parameter ID network: three hidden layers of
four nodes, five nodes, and four nodes, respec-
tively.

NETWORK SIMULATION RESULTS
Once the networks were trained with the reduced

data set, they were applied successively to each of the
150 simulation cases.t As an example, the IMS net-
work estimates f) as well as the actual values 77 are
plotted for a particular simulation case of the IMS
neural network in Figure 3. The general accuracy of
the neural networks over the entire suite of simulation
cases is measured by the root-mean-square 77 estimate

t Several simulation cases failed to trim successfully, and
hence were discarded.
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error and can be graphically depicted by a scatter plot
such as in Figure 4 where the 77 estimate at each sam-
ple instant is plotted versus the actual 77 value at that
instant for the IMS network. Furthermore, we have es-
timated the error distribution of each network over all
simulation sample instants (i.e., 0-600s at 30 Hz) by
calculating a histogram. Figure 5 displays a histogram
for the IMS neural network.

1.5r

200 400 600
Fig. 3 IMS neural network rj estimate along with
actual value of rj for a sample simulation. This sim-
ulation had an initial velocity of 70 m/s, an initial
altitude of 2,300 m, both wing and tailplane icing,
and no turbulence.

Fig. 4 Scatter plots of IMS neural network es-
timated 77 versus actual (instantaneous) r\ over all
simulation runs. A perfect neural network would
have all points lying on the depicted line of slope
one.

Although the icing severity estimate for the IMS
neural network can have significant error at a given
sample instant as shown in Figure 3, Figures 4 and 5
clearly indicate that these significant errors are rare
in the set of all simulation sample instants. In fact,
detailed study of all simulation cases for the IMS net-
work, which are not included here for the sake of
brevity, reveal that the simulation case depicted in
Figure 3 is the worst case in terms of estimate er-

100r

80

0.005 0.01

Fig. 5 Distribution of the 77 estimate error for
the IMS neural network over all simulation runs
expressed in terms of percentage. The distribution
has mean of —2.8 x 10~6 and standard deviation of
4.4 x 1(T4.

ror, and moreover that all other cases appear perfect
on visual inspection. The IMS network has a mean
error of —2.8 x 10~6, an error standard deviation of
4.4 x 10~4, and an error of greater than 0.01 (i.e., 1%
of the difference between a clean aircraft and a nom-
inally iced aircraft) for only 0.05% of simulation time
instants. This exceptional performance, along with the
immature nature of the hinge moment model, begs the
question: which measurements are responsible for the
performance?

10"

10"

10"

10"

10

10'

—— IMS Network
- - Hinge Moment
• • • • • • Trim Characterization
• - • - Parameter Identification
— Limited IMS Network

0.15 0.3

Fig. 6 Root-mean-square 77 estimate error versus
turbulence level (in g) for several neural networks
trained on various information sources. The IMS
network is trained on all available information, and
the limited IMS network uses all but the hinge mo-
ment measurements.

The answer to this question lies in Figure 6, where
the root-mean-square errors for the IMS network, the
limited IMS network, and three networks trained on
only hinge moment measurements, only steady-state
characterization, and only parameter ID are plotted
as a function of the turbulence level. These results
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clearly demonstrate that the hinge moment measure-
ments are primarily responsible for the excellent accu-
racy of the IMS network. Furthermore, while the trim
characterization performs fairly well, the parameter
identification performs quite poorly. This is surprising
given the results for time-varying H°° parameter iden-
tification for icing characterization during steady, level
flight reported in.6 This unexpected poor performance
is most likely due to the trim condition variations
that were not considered in the previous work, which
assumed a linear model. Since the identification is
based on a dimensional derivative model, the expected
clean parameters can exhibit changes due to trim ve-
locity variations that are much larger than changes
in parameters due to icing. Presently the parameter
identification is being converted to an algorithm based
on dimensionless derivatives, thus removing to a large
degree the dependence of the clean parameters upon
the trim condition.

0
Pig. 7 Scatter plot of limited IMS neural network
estimated 77 versus actual (instantaneous) rj over all
simulation runs. A perfect neural network would
have all points lying on the depicted line of slope
one.

Since the exceptional performance of the IMS net-
work is primarily due to the hinge moment measure-
ments, investigation of an IMS that does not rely on
those measurements, e.e.,the limited IMS, is a natural
step. A scatter plot for the limited IMS is given in
Figure 7, and a distribution histogram is given in Fig-
ure 8. Although the errors for this network are clearly
larger than those for the IMS network that incorpo-
rates hinge moment measurements, they are generally
acceptable. As with the IMS network, the limited IMS
network exhibits relatively rare large errors only very
rarely. In this case, the network has a mean error of
-1.8 x 10~7, an error standard deviation of 1.7 x 10~3,
and errors larger than 10% of the difference between
a clean aircraft and a nominally iced aircraft occur in
only 0.37% of the sample instants. In order to pro-
vide perspective for these results, Figures 9-14 display
the estimated and actual 77 values for several of the

100

80

60

40

I.05 0.05

Fig. 8 Distribution of the limited IMS network r\
estimate error over all simulation runs expressed
in terms of percentage. The distribution has mean
of -1.8 x 10~7 and standard deviation of 1.7 x 10~"3.

more inaccurate simulation cases for the limited IMS
network.

1.5

0.5

0 200 400 600
Fig. 9 Limited IMS neural network rj estimate
along with actual value of rj for a simulation with
an initial velocity of 70 m/s, an initial altitude of
2,300 m, both wing and tailplane icing, and a tur-
bulence amplitude of cr = 0.30.

CONCLUSION
This paper advocates a neural network approach for

characterizing longitudinal flight dynamics degrada-
tion due to icing during steady, level flight. Consistent
with previous work,7 we have again adopted the ic-
ing severity factor 77 as a measure of degradation of
the flight dynamics due to icing. The network incor-
porates (i) stability and control derivative estimates
from a dynamic parameter identification algorithm,
(ii) steady-state characterization based on trim condi-
tion estimates, (iii) hinge moment measurements, and
(iv) measures of the excitation of the flight dynamics.
The measures of excitation are included so that the
network can reconcile parameter identification, which
is more accurate during periods of rich excitation, and
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1.5——————————————————n 1.5——————————————————

200 400 600
Fig. 10 Limited IMS neural network 77 estimate
along with actual value of 77 for a simulation with
an initial velocity of 70 m/s, an initial altitude of
2,300 m, both wing and tailplane icing, and no tur-
bulence.

1.5

0.5

0 A
o 200 400 600

Fig. 11 Limited IMS neural network 77 estimate
along with actual value of rj for a simulation with
an initial velocity of 70 m/s, an initial altitude of
2,300 m, both wing and tailplane icing, and a tur-
bulence amplitude of cr = 0.15<?.

steady-state characterization, which is more accurate
during periods with less excitation. The IMS neural
network was tested on a set of simulation cases that
varied over a wide range of steady, level flight operat-
ing conditions. Each simulation case consisted of ten
minutes of data generated at 30 Hz. The IMS net-
work was applied to the simulated data at each time
instant, and the estimated 77 is compared with the ac-
tual 77 in order to generate error statistics. The IMS
network is exceptionally accurate, with 77 estimate er-
rors greater than 0.01 for only 0.05% of simulation
time instants, where 77 = 0.01 corresponds to 1% of
the difference between a clean aircraft and the icing
degradation corresponding to the NASA Tailplane Ic-
ing Program simulated ice.

In order to determine which class of data was most
useful, we used the RMS error of networks trained

0.5

o
0 200 400 600

Fig. 12 Limited IMS neural network 77 estimate
along with actual value of rj for a simulation with
an initial velocity of 65 m/s, an initial altitude of
2,300 m, both wing and tailplane icing, and no tur-
bulence.

1.5

0.5

0
0 200 400 600

Fig. 13 Limited IMS neural network rj estimate
along with actual value of 77 for a simulation with
an initial velocity of 80 m/s, an initial altitude of
2,300 m, both wing and tailplane icing, and a tur-
bulence amplitude of v = 0.150.

on each individual data class, hinge moment measure-
ments, steady-state characterization, and parameter
identification, as a measure of the utility of that data.
Prom this analysis, it was found that the hinge mo-
ment measurements were primarily responsible for the
excellent performance of the IMS network. Moreover,
the analysis demonstrated surprisingly poor parame-
ter identification performance, despite the promising
results reported previously by the authors.6 This poor
performance is most likely due to the fact that the pa-
rameter identification algorithm is based on a dimen-
sional derivative model, and that the previous results
used a linear flight dynamics model to generate sim-
ulation data. Presently, an identification algorithm
based on dimensionless derivatives is being developed
to address this inconsistency.

Finally, cautiousness regarding the immaturity of
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Fig. 14 Limited IMS neural network 17 estimate
along with actual value of 77 for a simulation with
an initial velocity of 80 m/s, an initial altitude of
2,300 m, both wing and tailplane icing, and a tur-
bulence amplitude of a- = 0.150.

the hinge moment model motived us to investigate a
neural network that does not use hinge moment mea-
surements. Simulation results for this limited IMS
network^ while less accurate than the IMS network,
still achieve a high degree of accuracy, with 77 estimate
errors larger than 10% of the difference between a clean
aircraft and a nominally iced aircraft occurring in only
0.37% of the simulation sample instants.
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