Autopilot and Envelope Protection

- Vikrant Sharma (AAE/CSL)
- Prof. Petros G. Voulgaris (AAE/CSL)
- Kishwar Hossain (AAE)
- Prof. Michael Bragg (AAE)

SMART ICING SYSTEMS Research Organization

Typical Flight Envelope

Smart Icing Systems Review, May 28, 2003

- Aerodynamic Limits
- Thrust/Power Limits
- Structural Limits
- The flight envelope is primarily a function of load factor, velocity and altitude
- The *clean* aircraft flight envelope remains *constant*

Example of a Clean Aircraft Flight Envelope from Ramer 1989.

Envelope Protection for Commercial Jets

OHIO STATE

- Fly-by-wire system
- Pre-set limits
- Feel actuators
- Bank angle protection
- Stall protection
- Boeing: soft limits on control surface deflections
- Airbus: hard limits on the aircraft aerodynamic angles

Current System Limitations

ILLINOIS STATE

- **Problem**: Limits change with level of ice accretion.
- **Solution**: In icing conditions the limits have to be determined and enforced *dynamically* during flight.
- **Problem**: Limits may be exceeded during maneuvers if only current sensor data is used to provide protection
- **Solution**: System needed for *prediction* of future values from available sensor data including control positions.

Objectives

 Develop and analyze envelope protection techniques for operation in icing conditions

OHIO STATE

 Investigate standard autopilot behavior in icing conditions

Approach

Smart Icing Systems Review, May 28, 2003

- Prediction-based, dynamic, envelope protection
- Two modes: A/P off, A/P on

OHO

STATE

Π

ILLINOIS

- A/P stability and performance characterization using robust control techniques
- Implement and test a '0th order' EP scheme for flight simulator: if $\alpha > \alpha_{max}$ generate warning
- Develop more sophisticated schemes based on prediction of future values

Why two EP schemes

- Current guidelines suggest A/P off under icing ⇒ 'open loop' EP necessary
- Future planes will rely heavily on automation ⇒ 'closed loop' EP is essential

Dynamic Envelope

• The critical parameters:

- $-a_w$: Wing angle of attack
- $-a_t$: Tail angle of attack
- -f : Roll angle
- Limits can be defined for these parameters as a function of ice accretion.

Angle of Attack Limiting

Smart Icing Systems Review, May 28, 2003

• C_{lmax} vs DC_l fitted as linear functions for several AOA. $C_{L_{max}} = f(\Delta C_L(\mathbf{h}_{ice}, \mathbf{a}))$

OHO

STATE

- The trim AOA used to find corresponding fit.
- The AOA corresponding to the C_{lmax} is then set as the limit

EP with A/P off

- Limit detection: Estimate limit boundaries using information from icing characterization
- **Prevention of limit violation:** Predict control limits and restrict the control deflection to safe values
- Envelope Protection Interface: Display limit information in the glass cockpit and use force feedback to avoid limit violation

Estimation of Safe Elevator Limits

Smart Icing Systems Review, May 28, 2003

• Initialize the EP System:

OHO

STATE

The aircraft configuration and state at each time step is used to initialize the code

• Aircraft Model:

The iced non-linear aircraft model is used to calculate the force and moment coefficients within the code

• Calculate Elevator Limit:

The equations of motion are used to calculate the safe elevator limit

• Enforcing the Limit:

Pilot $\underline{\circ}_{e}$ input "limited" by $\underline{\circ}_{e,\text{limit}}$

Simulation Results

Smart Icing Systems Review, May 28, 2003

Nonlinear Prediction of Angle of Attack Response

Simulation Results

OHIO STATE

Smart Icing Systems Review, May 28, 2003

Linear Prediction of Elevator Limit

Open Loop EP Conclusions

- The method developed to estimate the stall angle of attack showed promising results
- Estimates based on limited airfoil data
- Need to include 3-D wind tunnel or flight test data in order to improve stall estimates
- Linearized ≏_{e,limit} predictions show encouraging results for cases tested
- Explore nonlinear $\Delta_{e,limit}$ predictions

EP with A/P on

- Pilot stick position dynamically affects control position
- EP continuously calculates limits on stick position and informs A/P

Closed Loop EP

- Monitor A/C state, A/P state and icing level
- Predict on-line future A/C state with current pilot input
- Adjust input based on prediction, inform pilot
- Same principle as open loop; different dynamical equations

Autopilots

- Longitudinal Modes
 - Pitch Attitude Hold (PAH)
 - Altitude Hold (ALH)
- Lateral Modes
 - Roll Attitude Hold (RAH)
 - Heading Hold (HH)

Block Diagram for PAH

A/P Performance in Clean Conds

- Gains are scheduled on A/C speed
- Local designs exhibit good performance and stability margin properties
- Overall A/P performs well over the operational envelope of Twin Otter for clean conditions

Closed Loop PAH in Icing Conds

OHO TILINOIS STATE

Smart Icing Systems Review, May 28, 2003

• The closed loop model is affinely dependent on the icing parameter *h*, i.e.

$$dx/dt = A(h)x$$
$$A(h) = A_{o} + h(t)A_{1}$$
where $h \in \Delta$, with $\Delta = [0, h_{max}]$

• Is iced closed loop stable?

Quadratic Stability

Smart Icing Systems Review, May 28, 2003

• Stability condition in terms of two LMIs $A(h=0)^T K + KA(h=0) < gl$ and A(h = h =)TK = KA(h = h = h = d)

OHIO STATE

NASA

$$A(\mathbf{h}=\mathbf{h}_{max})^{T}K + KA(\mathbf{h}=\mathbf{h}_{max}) < gl$$

where $g < 0$ and $\mathbf{h}(t) \in [0, \mathbf{h}_{max}]$

• Above can be checked with LMILAB

Stability Analysis

- Pitch Attitude hold A/P maintains stability under icing for all icing conditions
- There is a small degradation in the guaranteed stability level
- Nonlinear phenomena not captured

PAH A/P with EP Module

Envelope Protection for PAH Autopilot

OHIO STATE

Smart Icing Systems Review, May 28, 2003

PROBLEM: Insure for all time

 $\boldsymbol{a}(t) < \boldsymbol{a}_{\max}\left(\boldsymbol{h}(t)\right)$

APROACH: Modify accordingly $\boldsymbol{q}_{ref}(t)$

Envelope Protection Scheme

- Look at step pilot inputs
- Look at steady state response of the angle of attack

Data Generation

Smart Icing Systems Review, May 28, 2003

 Data is generated by issuing a range of reference pitch commands at different flying conditions

- Steady state angle of attack values corresponding to trim state values of V, $m{h}$ and $m{q}_{\it ref}$ are recorded

EP Module Coding Scheme

Smart Icing Systems Review, May 28, 2003

EVERY 5 SECONDS

• Treat the state reached as a trim state

OHIO STATE

• Use the data generated to obtain maximum allowable $q_{ref}(q_{ref}^{max})$ at that state

$$\boldsymbol{a}_{ss} = f(V, \boldsymbol{h}, \boldsymbol{q}_{ref}^{\max}) \approx \boldsymbol{a}_{stall}(\boldsymbol{h})$$

• Compare at the current point with the value and pitch down if necessary

Simulation Results: **h** Fixed

OHIO STATE

- A/C trimmed at V = 60 m/s with η=0.06 at H=2300m
- A pitch up command of 7.6 degrees issued
- $\alpha_{stall} = 11.4$ degrees

h Fixed continued...

A Time Varying **h** Case

Smart Icing Systems Review, May 28, 2003

 A pitch up command of 7.6 degrees with V=60m/s is issued and ice starts to build and grows from η=0 at t=0

OHIO STATE

to η =0.06 at t=50 s.

Varying **h** Continued...

Closed Loop EP Conclusions

- The pitch command inputs need to be reduced in case of icing to stay within the prescribed limit
- The EP module works well with varying stall angle limits due to ice accretion

- Developed prediction based EP methods for AoA limiting in icing conditions that show great promise in preventing envelope excursions
- Established stability of standard PAH schemes in icing conditions
- Demonstrated that standard PAH schemes can be safe if combined with appropriate closed loop EP modules
- Full scale development of prediction-based EP modules and validation of AP schemes is needed to establish full confidence