Smart Icing System Review, September 30 – October 1, 2002

Autopilot Analysis and EP Scheme for the Twin Otter under Iced Conditions. Vikrant Sharma University of Illinois

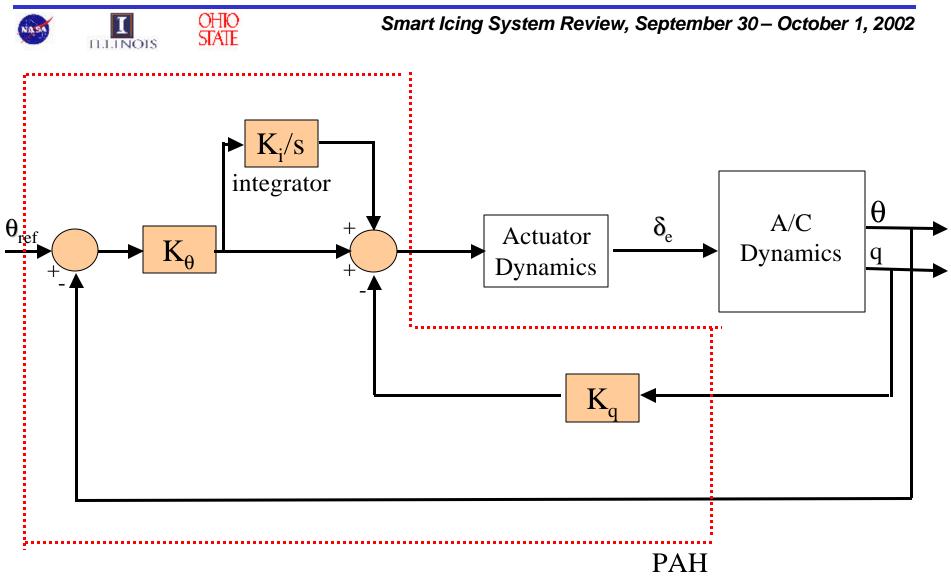
OHIO STATE

Objectives

Smart Icing System Review, September 30 – October 1, 2002

• Investigate the autopilot behavior under iced conditions.

• Develop an envelope protection scheme for the autopilot system to operate under iced conditions.


Overview of the talk

- Pitch attitude hold (PAH) autopilot (A/P) structure
- Stability analysis of the PAH A/P
- Reference value limits through Linear Matrix Inequalities analysis
- Envelope Protection scheme
- Work in progress

OHIO STATE

Block Diagram for PAH

Affine Model of Closed Loop PAH

Smart Icing System Review, September 30 – October 1, 2002

 The closed loop model is affinely dependent on the icing parameter *h*, i.e.

OHIO STATE

 $\dot{x} = A(\mathbf{h})x$

A is a function of **h** and can be written in the form:

 $A(h) = A_0 + h(t)A_1$ Where $h \in \Delta$, with $\Delta = [0, h_{max}]$

Quadratic Stability

The PAH A/P system given by

 $\dot{x} = A(\mathbf{h})x$

is stable iff $\exists K = K^T > 0$ s.t.

OHIO STATE

 $A(\boldsymbol{h})^{\mathsf{T}}\boldsymbol{K} + \boldsymbol{K}\boldsymbol{A}(\boldsymbol{h}) < \boldsymbol{0}$

For all $h \in [0, h_{max}]$ **PROBLEM**: This places an infinite number of constraints on the symmetric matrix K

Quadratic Stability

SOLUTION

Since the system is affinely dependent on *h* the quadratic stability condition is the same as the following TWO LMIs

OHIO STATE

ILLINOIS

 $A(\mathbf{h}=0)^T K + KA(\mathbf{h}=0) < g$ and

 $A(\mathbf{h}=\mathbf{h}_{max})^{T}K + KA(\mathbf{h}=\mathbf{h}_{max}) < \mathbf{g}$

where g is a negative scalar and

 $\boldsymbol{h}(t) \in [0, \boldsymbol{h}_{max}]$

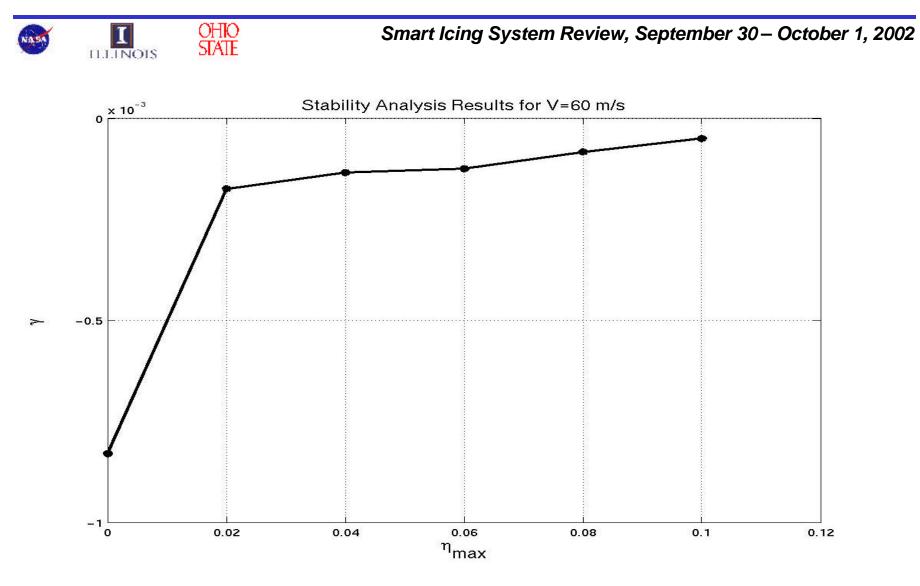
• The above can be solved to obtain minimum possible values of \boldsymbol{g} using LMILAB in MATLAB

Linear Matrix Inequalities (LMI's)

Smart Icing System Review, September 30 – October 1, 2002

• What are they?

OHIO STATE


• An expression of the form: $F(x) = F_0 + x_1F_1 + \dots + x_mF_m > 0$

where

 $X = (x_1, \dots, x_m)$ is a vector of decision variables

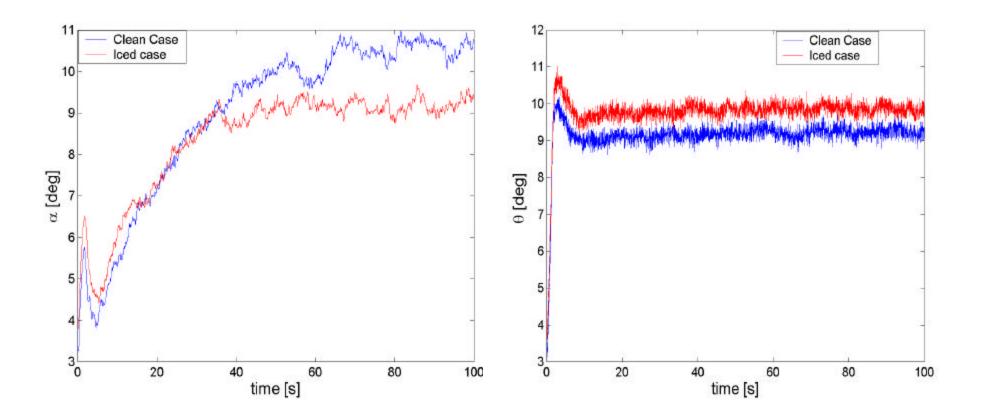
 F_0, \ldots, F_m are real symmetric matrices, Inequality > 0 means positive definite

Results

Conclusion

 The linear analysis show that the Pitch Attitude hold A/P will maintain stability under icing

OHIO STATE

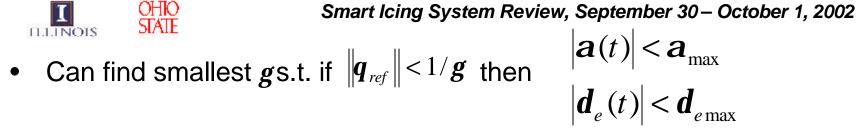

• There is a small degradation in the guaranteed stability level

Simulation results

Smart Icing System Review, September 30 – October 1, 2002

 Comparison of the Pitch Hold PID controller response at V = 60 m/s to a pitch up by 6 degrees.

Envelope Protection for PAH Autopilot



Smart Icing System Review, September 30 – October 1, 2002

PROBLEM:Insure $a(t) < a_{max}(h(t))$ For all time

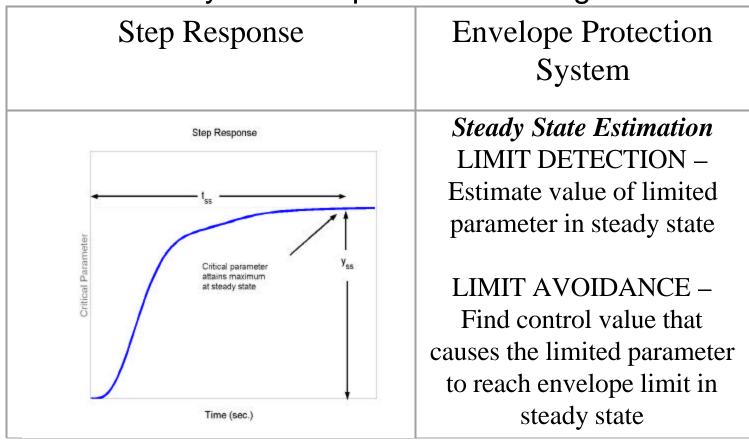
APPROACH: Keep $q_{ref}(t)$ low enough so that the above is insured

Limits on the Reference Pitch Using LMI Techniques

• Values obtained using $|a_{max}| = 18.1$ degrees for the clean and $|a_{max}| = 13$ degrees for iced case and $|d_{emax}| = 26$ degrees

Clean Case

Iced Case (*h*=0.1)


Velocity (m/s)	Maximum $ \mathbf{q}_{ref}(t) $ allowed (deg)	Velocity (m/s)	Maximum $ \mathbf{q}_{ref}(t) $ allowed (deg)
60	6.0311	60	4.5837
65	7.5389	65	5.7296
70	5.8465	70	5.8465

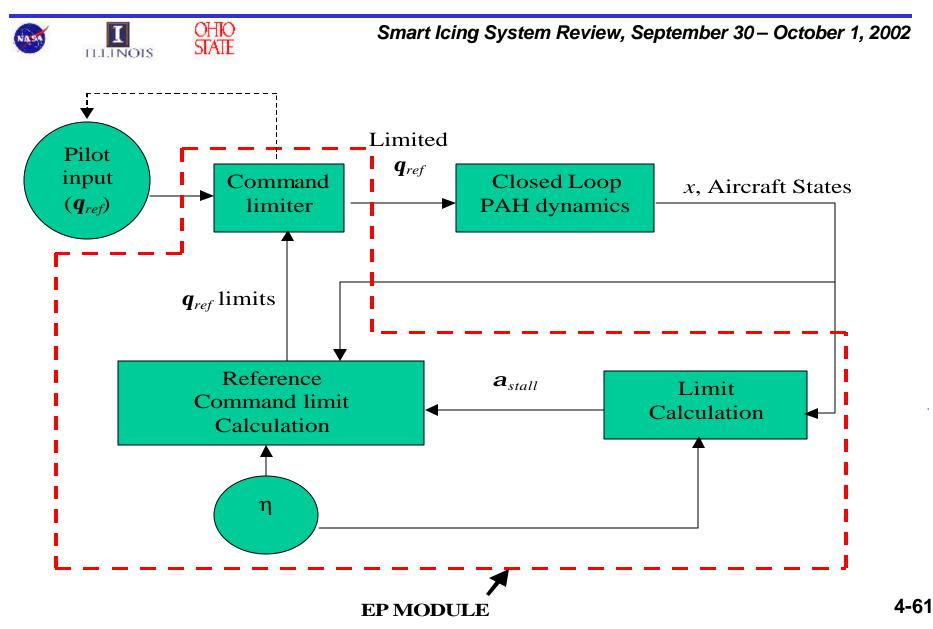
An Alternate Envelope Protection Scheme

Smart Icing System Review, September 30 – October 1, 2002

- Earlier LMI technique might be conservative.
- Look at step pilot inputs
- Look at steady state response of the angle of attack

Table of limits on q_{ref} (Clean Case) from SS and LMI approach (a_{max} =18.1 deg)

OHIO STATE


Smart Icing System Review, September 30 – October 1, 2002

Steady State

LMI approach

Velocity (m/s)	Maximum step \boldsymbol{q}_{ref} allowed (deg)	Velocity (m/s)	Maximum \boldsymbol{q}_{ref} allowed (deg)
60	9.4	60	6.0311
65	10.9	65	7.5389
70	12.6	70	5.8465

PAH A/P with EP Module

Data Generation

Smart Icing System Review, September 30 – October 1, 2002

 Data is generated by issuing a range of reference pitch commands at different flying conditions

 Steady state angle of attack values corresponding to trim state values of V, h and q_{ref} are recorded

EP Module Coding Scheme

Smart Icing System Review, September 30 – October 1, 2002

EVERY 5 SECONDS

• Treat the state reached as a trim state

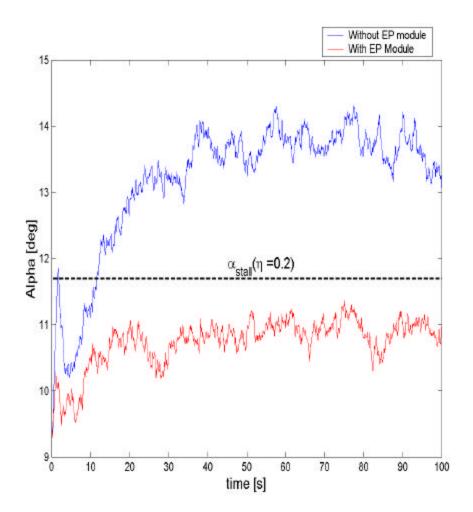
OHIO STATE

DUINOIS

• Use the data generated to obtain maximum allowable q_{ref} (q_{ref}^{max}) at that state

$$\boldsymbol{a}_{ss} = f(V, \boldsymbol{h}, \boldsymbol{q}_{ref}^{\max}) \approx \boldsymbol{a}_{stall}(\boldsymbol{h})$$

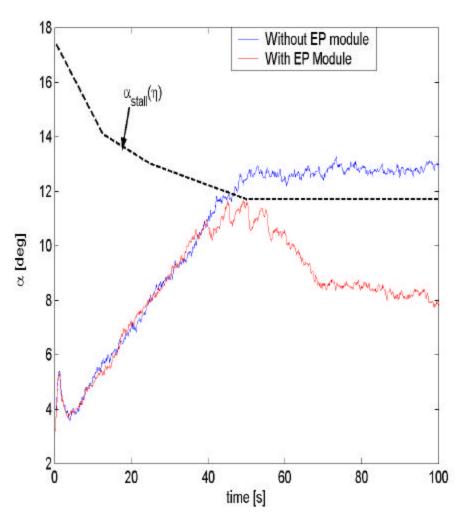
 Compare q_{ref} at the current point with the q^{max}_{ref} value and pitch down if necessary


A scenario

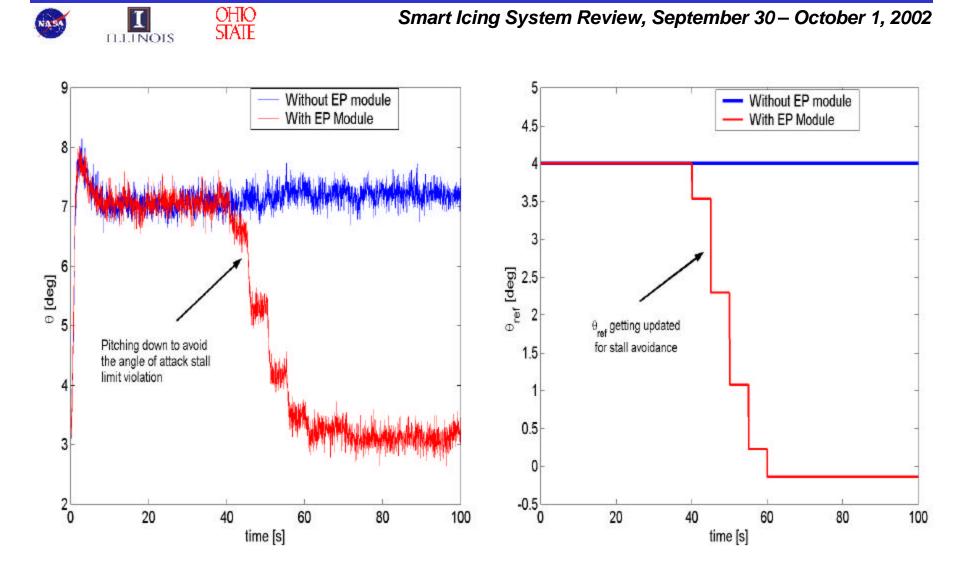
OHIO STATE

Smart Icing System Review, September 30 – October 1, 2002

- A/C trimmed at V = 50 m/s with η=0.2 at H=2300m.
- A pitch up command of 4 degrees issued.



Another Scenario


Smart Icing System Review, September 30 – October 1, 2002

 A pitch up command of 4 degrees with V=60m/s is issued and ice starts to build and grows from η=0 at t=0 to η=0.2 at t=50 s.

OHIO STATE

Continued

Summary

Smart Icing System Review, September 30 – October 1, 2002

 The pitch command inputs need to be reduced in case of icing to stay within the prescribed limit

• The EP module works fine with varying stall angle limits with icing

Work in Progress

OHIO STATE

Smart Icing System Review, September 30 – October 1, 2002

• Test the steady state based envelope protection module in the simulator

 Complete study on alternative PAH A/P design