

The Design Of A Use(r)-Centered Pilot-IMS Interface

An Overview of the Activities and Products of the Cognitive Engineering Group

Principal Investigator: Nadine B. Sarter

Graduate Student: John M. McGuirl

SMART ICING SYSTEMS Research Organization

Cognitive Engineering

Smart Icing System Review, September 30 – October 1, 2002

Goal: Improve the safety of flight in icing conditions. Develop smart system to improve ice tolerance.

Objectives: Design human-centered interface that

OHO

STATE

Ι

ULLINOIS

- a) informs pilots about presence/changes and performance effects of icing conditions
- b) communicates IMS/IPS status/activities/limitations to crew in timely and effective manner
- c) provides pilots with advisories for handling inflight icing encounters safely
- Approach:Identify pilots' information requirementsDevelop candidates for human-centered cockpit interfaceEvaluate effectiveness and robustness of candidates in
simulator studies

Smart Icing System Research

Cognitive Engineering

Smart Icing System Review, September 30 – October 1, 2002

Attention Capture and Guidance

Cognitive Engineering

Smart Icing System Review, September 30 – October 1, 2002

Multimodal Information Presentation

OHIO STATE

I

ILLINOIS

Comparison of Effectiveness of Visual and Tactile Cues For Presenting Icing-Related Information

- Modern flight decks impose considerable demands on visual and auditory channels
- Tactile channel is underutilized although powerful means of capturing attention and useful for providing some diagnostic information
- As more systems/data are added, multimodal information presentation becomes more important to avoid resource competition (Multiple Resource Theory)

Tactile Condition

<u>OHIO</u>

STATE

Ι

ILLINOIS

- Vibrotactors placed on inside of the forearm.
- Cues were presented sequentially
 (wing →tail)
 cycled for 5 seconds.

Detection of Icing Cues

Tactile group performed as well as the two visual groups

Smart Icing System Review, September 30 – October 1, 2002

Accuracy in Identifying Icing Cues

61% of misidentifications involved light and medium icing levels

Refinement to tactor cues resulted in a 59% reduction in misidentifications

Secondary Visual Task Performance

Tactile cues afforded better divided attention

Cognitive Engineering

OHO

STATE

Π

ILLINOIS

The IMS as a Decision-Support System: A Simulator Study Comparing Status and Command Displays

Beth Schroeder and Nadine Sarter

Note: Thesis document is included on the CD

Smart Icing System Review, September 30 – October 1, 2002

- <u>Participants:</u> 27 instructor pilots
- <u>Flight experience:</u> average: 777 (827) hrs range: 200-4,600 hrs
- <u>3 conditions:</u> baseline (no aid, except for icing probe)
 - status display
 - command display
- Medium-fidelity simulation of twin-engine aircraft

Smart Icing System Review, September 30 – October 1, 2002

The Status Display

Smart Icing System Review, September 30 – October 1, 2002

The Command Display

Smart Icing System Review, September 30 – October 1, 2002

Stall frequency as function of display condition and accuracy of IMS information

Display Condition X Accuracy

Smart Icing System Review, September 30 – October 1, 2002

Summary

- Status display appears to be preferable.
 - equally beneficial with accurate information
 - less vulnerable to effects of inaccurate information than command
 - fewer recovery errors
- Still need better support for trust calibration as well as long-term planning and decision-making

Supporting trust calibration: The case for dynamic reliability feedback

John McGuirl

Note: Thesis document is included on the CD

Trust Calibration

Use of automated systems, such as decision aids, has been linked to several factors including:

- users' confidence in performing the task
- task complexity

OHO

STATE

I

ULLINOIS

- risk involved in task
- perceived and actual reliability of the automation

Trust calibration refers to how closely perceived reliability matches actual reliability

Participants:

Ι

ULLINOIS

30 U of I instructor pilots

Flight experience:

OHIO

STATE

Average: 825 hrs Range: 275-2400 hrs

Session 1 (1 hour)

- introduction to icing symptoms, simulator, and experiment

Sessions 2 and 3 (2 hours each)

- simulator practice
- 14 data trials (7 cruise + 7 ILS approaches)
- debriefing at the end of Session 3

Between-subjects variable

OHO

STATE

Ι

ILLINOIS

- reliability information (static vs dynamic)

Within-subjects variables

- type of DSS (command vs status)
- accuracy of decision aid (correct vs incorrect)
- familiarity with situation (wing vs tail icing)
- taskload (cruise vs ILS approach)
- reliability level (high, low, variable)
- reliability display availability (continuous vs on-demand)

- dynamic group only

Smart Icing System Review, September 30 – October 1, 2002

Cockpit Display

Π

Smart Icing System Review, September 30 – October 1, 2002

Pitch command (Schroeder 2000) Pitch command (McGuirl 2002)

De-briefing indicated the potential to mis-interpret the arrow length to indicate magnitude of required pitch input

Cockpit Display

Smart Icing System Review, September 30 – October 1, 2002

Reliability Trend Display

Provided a 5-minute history of reliability

Y- axis values omitted to avoid fixation on a particular value

Reliability was high for the first minute of each trial

Smart Icing System Review, September 30 – October 1, 2002

Dependent Variables

- appropriateness of initial and secondary response to icing
- stall events
- tracking performance
- detection of navigation-aid failures
- reliability display sampling (dynamic group only)

Stall frequency as a function of availability of reliability information

OHIO

STATE

I

ILLINOIS

Stall frequency as a function of reliability information and decision aid accuracy

OHIO

STATE

Ι

ILLINOIS

Stall frequency as a function of decision aid type and decision aid accuracy

Smart Icing System Review, September 30 – October 1, 2002

Trend Display Sampling

Pilot compliance with decision aid vs. DSS accuracy

OHIO

STATE

I

ILLINOIS

Reversal of compliance as a function of reliability information display

Smart Icing System Review, September 30 – October 1, 2002

Perceived accuracy as a function of DSS and information type

OHIO

STATE

1

ILLINOIS

Detection of navigation-aid failure as a function of reliability information type

Summary

Providing system reliability feedback afforded better trust calibration, resulting in less over-reliance and fewer stall events

OHO

STATE

Ι

ULLINOIS

Also appears to have reduced automation bias, allowing for more flexible, adaptive responses for error recovery

Given the added information, command display may be more desirable

Further work is needed to explore situations which contain

- less predictable reliability feedback
- larger number of possible diagnoses

Overall Design Concept

OHIO

STATE

Smart Icing System Review, September 30 – October 1, 2002

Sample Sequence of Possible Icing Encounter and Associated IMS Indications

Smart Icing System Review, September 30 – October 1, 2002

Future Work

 Addition/substitution/integration of auditory and tactile feedback for supporting time-sharing and attention management

OHO

STATE

ULLINOIS

- Review and evaluation of SIS interface concept from a systems engineering perspective
- Collaboration with other team-members on the refinement of the envelope protection/flight control adaptation approach and indications